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Figure 1. We propose CyberDemo, a novel pipeline for learning real-world dexterous manipulation by using simulation data. First, we
collect human demos in a simulated environment (blue region), followed by extensive data augmentation within the simulator (yellow
region). Then, the imitation learning model, trained on augmented data and fine-tuned on a few real data, can be deployed on a real robot.

Abstract
We introduce CyberDemo, a novel approach to robotic

imitation learning that leverages simulated human demon-
strations for real-world tasks. By incorporating extensive
data augmentation in a simulated environment, CyberDemo
outperforms traditional in-domain real-world demonstra-
tions when transferred to the real world, handling diverse
physical and visual conditions. Regardless of its affordabil-
ity and convenience in data collection, CyberDemo outper-
forms baseline methods in terms of success rates across var-
ious tasks and exhibits generalizability with previously un-
seen objects. For example, it can rotate novel tetra-valve
and penta-valve, despite human demonstrations only in-
volving tri-valves. Our research demonstrates the signifi-
cant potential of simulated human demonstrations for real-
world dexterous manipulation tasks. More details can be
found at https://cyber-demo.github.io/

*Equal contributions.

1 . Introduction

Imitation learning has been a promising approach in robot
manipulation, facilitating the acquisition of complex skills
from human demonstration. However, the effectiveness of
this approach is critically dependent on the availability of
high-quality demonstration data, which often necessitates
substantial human effort for data collection [6, 9, 48]. This
challenge is further amplified in the context of manipulation
with a multi-finger dexterous hand, where the complexity
and intricacy of the tasks require highly detailed and precise
demonstrations.

In imitation learning, in-domain demonstrations, which
refer to the data collected directly from the deployment
environment, are commonly used for robot manipulation
tasks [43]. It is generally believed that the most effective
way to solve a specific task is to collect demonstrations di-
rectly from the real robot on that task. This belief has been
upheld as the gold standard, but we wish to challenge it. We
argue that collecting human demonstrations in simulation

https://cyber-demo.github.io/


can yield superior results for real-world tasks, not only be-
cause it does not require real hardware and can be executed
remotely and in parallel, but also due to its potential to en-
hance final task performance by employing simulator-only
data augmentation [34, 37, 42, 44, 53, 58]. This allows the
generation of a dataset that is hundreds of times larger than
the initial demonstration set. However, while existing stud-
ies employ the generated dataset to train in-domain policies
within the simulation, the sim2real challenge of transferring
policies to the real world remains an unresolved problem.

In this paper, we study the problem of how to utilize
simulated human demos for real-world robot manipulation
tasks. We introduce CyberDemo, a novel framework de-
signed for robotic imitation learning from visual observa-
tions, leveraging simulated human demos. We first collect
a modest amount of human demonstration data via teleop-
eration using low-cost devices in a simulated environment.
Then, CyberDemo incorporates extensive data augmenta-
tion into the original human demonstration. The augmented
set covers a broad spectrum of visual and physical condi-
tions not encountered during data collection, thereby en-
hancing the robustness of the trained policy against these
variations. These augmentation techniques are also de-
signed with the downstream sim2real transfer in mind. We
employ a unique curriculum learning strategy to train the
policy on the augmented dataset, then fine-tune it using a
few real-world demos (3-minute trajectories), facilitating
effective transfer to real-world conditions. While policies
trained on only real-world demonstrations may suffer from
variations in lighting conditions, object geometry, and ob-
ject initial pose, our policy is capable of handling these
without the need for additional human effort.

Our system, which utilizes a low-cost motion capture
device for teleoperation (i.e., RealSense camera) and de-
mands minimal human effort (i.e., a 30-minute demo tra-
jectory), can learn a robust imitation learning policy. De-
spite its affordability and minimal human effort require-
ments, CyberDemo can still achieve better performance on
the real robot. Compared with pre-trained policies, e.g.
R3M [46] fine-tuned on real-world demonstrations, Cy-
berDemo achieves a success rate that is 35% higher for
quasi-static pick and place tasks, and 20% higher for non-
quasi-static rotate tasks. In the generalization test, while
baseline methods struggle to handle unseen objects during
testing, our method can rotate novel tetra-valve and penta-
valve with 42.5% success rate, even though human demon-
strations only cover tri-valve (second row of Figure 1). Our
method can also manage significant light disturbances (last
column of Figure 1). In our ablation study, we observe that
the use of data augmentation, coupled with an increased
number of demonstrations in the simulator, results in su-
perior performance compared to an equivalent increase in
real-world demonstrations. To foster further research, we

will make our code and human demonstration dataset pub-
licly available.

2 . Related Work
Data for Learning Robot Manipulation. Imitation learn-
ing has been proven to be an effective approach to robotic
manipulation, enabling policy training with a collection of
demonstrations. Many works have focused on building
large datasets using pre-programmed policies [17, 23, 31,
33, 84], alternative data sources such as language [30, 66,
67, 69] and human video [5, 47, 54, 63, 64] or extensive
real-world robot teleoperation [2, 3, 6, 9, 20, 32, 39, 43, 48].
However, such works predominantly targeted parallel grip-
pers. Collecting large-scale demonstration datasets for
high-DoF dexterous hands continues to be a significant
challenge. Meanwhile, data augmentation presents a viable
strategy to improve policy generalization by increasing the
diversity of data distribution. Previous studies have applied
augmentation in low-level visual space [16, 28, 56, 65],
such as color jitter, blurring, and cropping, while more
recent works propose semantic-aware data augmentation
with generative models [7, 14, 15, 40, 78, 86]. However,
these augmentations operate at the image level and are not
grounded in physical reality. CyberDemo extends data aug-
mentation to the trajectory level using a physical simulator,
accounting for both visual and physical variations. Concur-
rent to our work, MimicGen [44] proposes a system to syn-
thesize demonstrations for long-horizon tasks by integrating
multiple human trajectories. However, it confines demon-
strations to in-domain learning, i.e., it only trains simulation
policies with simulated demos without transferring to real
robots. In contrast, our work aims to harness simulation for
real-world problem-solving. We exploit the convenience of
simulators for collecting robot demonstrations and employ
a sim2real approach to transfer these demos to a dexterous
robot equipped with a multi-finger humanoid hand. Our re-
search emphasizes a general framework that leverages sim-
ulated demonstrations for real-world robot manipulation.
Pre-trained Visual Representation for Robotics Recent
progress in large-scale Self-Supervised Learning [10, 26,
27] has enabled the development of visual representations
that are advantageous for downstream robotic tasks [62, 80,
83]. Several studies have focused on pretraining on non-
robotic datasets, such as ImageNet [18] and Ego4D [22],
and utilizing the static representations for downstream robot
control [46, 49, 75]. Other research has focused on pre-
training visual representations on robot datasets, using
action-supervised self-learning objectives that depend on
actions [60, 64], or utilizing the temporal consistency of
video as a learning objective [59, 61, 70, 76]. These in-
vestigations primarily aimed to learn features for effective
training of vision-based robotic manipulation. In addition
to training visual representations on offline datasets, some
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Figure 2. CyberDemo Pipeline. First, we collect both simulated and real demonstrations via vision-based teleoperation. Following this,
we train the policy on simulated data, incorporating the proposed data augmentation techniques. During training, we apply automatic
curriculum learning, which incrementally enhances the randomness scale based on task performance. Finally, the policy is fine-tuned with
a few real demos before being deployed to the real world.

researchers have also explored learning the reward function
to be used in reinforcement learning [4, 36, 41, 45, 82]. Un-
like prior studies, our work diverges by utilizing simulation
data for pre-training rather than employing Self-Supervised
Learning for representation learning. This not only en-
hances the learning of image representations but also incor-
porates task priors into the neural network through the use
of action information. By pre-training in simulated environ-
ments, the manipulation policy can better generalize to new
objects with novel geometries and contact patterns.

Sim2Real Transfer The challenge of transferring skills
from simulation to real-world scenarios, known as sim2real
transfer, has been a key focus in robot learning. Some ap-
proaches have employed system identification to build a
mathematical model of real systems and identify physical
parameters [12, 29, 35, 38, 52, 73]. Instead of calibrating
real-world dynamics, domain randomization [50, 71] gen-
erates simulated environments with randomized properties
and trains a model function across all of them. Subsequent
research demonstrated that the selection of randomization
parameters could be automated [1, 11, 24, 81]. However,
due to the extensive sample requirements to learn robust
policies, domain randomization is typically used with RL
involving millions of interaction samples. Domain adap-

tation (DA) refers to a set of transfer learning strategies
developed to align the data distribution between sim and
real. Common techniques include domain adversarial train-
ing [21, 72] and the use of generative models to make sim-
ulated images resemble real ones [8, 28]. Most of these DA
approaches focus on bridging the visual gap. However, the
challenge of addressing the dynamics gap remains signif-
icant. The sim2real gap becomes even more pronounced
for dexterous robotic hands that have high-DoF actuation
and complex interaction patterns [24, 51, 77, 79]. In this
work, we extend the concept of domain randomization to
human demonstration collected in the simulator and focus
on data augmentation techniques that can effectively utilize
the simulation for transfer to a real robot. We demonstrate
that there can be a significant benefit in collecting human
demonstration in the simulator, despite the sim2real gap,
instead of solely relying on real data.

3 . CyberDemo
In CyberDemo, we initially gather human demonstrations
of the same task in a simulator through teleoperation (Sec-
tion 3 .1). Taking advantage of the simulator’s sampling
capabilities and oracle state information, we enhance the
simulated demonstration in various ways, increasing its vi-
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Figure 3. Data Augmentation. Our dataset augmentation encom-
passes four dimensions: (a) random camera views, (b) diverse ob-
jects, (c) random object pose, (d) random light and texture.

sual, kinematic, and geometric diversity, thereby enriching
the simulated dataset (Section 3 .2). With this augmented
dataset, we train a manipulation policy with Automatic Cur-
riculum Learning and Action Aggregation (Section 3 .3).

3 .1. Collecting Human Teleoperation Data

For each dexterous manipulation task in this work, we col-
lect human demonstrations using teleoperation in both sim-
ulated and real-world environments. For real-world data,
we utilize the low-cost teleoperation system referenced in
[55]. This vision-based teleoperation system solely needs
a camera to capture human hand motions as input, which
are then translated into real-time motor commands for the
robot arm and the dexterous hand. We record the observa-
tion (RGB image, robot proprioception) and the action (6D
Cartesian velocity of robot end effector, finger joint posi-
tion control target) for each frame at a rate of 30Hz. For
this work, we collect only three minutes of robot trajecto-
ries for each task on the real robot.

For data in simulation, we build the real-world task en-
vironments within the SAPIEN [74] simulator to replicate
the tables and objects used in real scenarios. It is worth not-
ing that, for teleoperation, there is no requirement of reward
design and observation spaces as in reinforcement learning
settings, making the process of setting up new tasks in the
simulator relatively simple. We employ the same teleoper-
ation system [55] to collect human demonstrations in the
simulator.

3 .2. Augmenting Human Demo in Simulator

Unlike real-world data collection, where we are limited to
recording observations of physical sensors, such as camera

RGB images and robot proprioception, the simulation sys-
tem enables us to record the ground-truth state and contact
information within the virtual environment. This unique
benefit of simulation provides a more comprehensive data
format for the simulated demonstrations compared to its
real-world counterparts. Thus, we can take advantage of
demonstration replay techniques on these simulated demon-
strations, which are not feasible with real-world data.

When developing data augmentation techniques in the
simulator, it is essential to keep in mind that the ultimate
goal is to deploy the trained policy to a real robot. The
augmentation should accordingly focus on the visual and
dynamical variations that are likely to be encountered in the
real world. Moreover, we aim for the manipulation pol-
icy to generalize to novel objects not encountered during
the data collection process. For example, manipulating the
tetra-valve when collecting data only on the tri-valve in Fig-
ure 3. Specifically, we chose to augment the lighting con-
ditions, camera views, and object textures to enhance the
policy’s robustness against visual variations. In addition,
we modified the geometric shape of the objects and the ini-
tial poses of the robot and objects to improve the policy’s
robustness against dynamical variations as follows:
Randomize Camera Views. Precisely aligning camera
views between demo collection and final evaluation, not
to mention between simulation and reality, poses a signif-
icant challenge. To solve this problem, we randomize the
camera pose during training and replay the internal state
of the simulator to render image sequences from new cam-
era views. Unlike standard image augmentation techniques
such as cropping and shifting, our method respects the per-
spective projection in a physically realistic manner.
Random Light and Texture. To facilitate sim2real trans-
fer and improve the policy’s robustness against visual varia-
tions, we randomize the visual properties of both lights and
objects (Figure 3, lower right). Light properties include di-
rections, colors, shadow characteristics, and ambient illu-
mination. Object properties include specularity, roughness,
metallicity, and texture. Similar to camera view random-
ization, we can simply replay the simulation state to render
new image sequences.
Add Diverse Objects. In this approach, we replace the
manipulated object in the original demos with novel ob-
jects (Figure 3 upper right). However, directly replaying
the same trajectory would not work as the object shape is
different. Instead, we perturb the action sequence from the
original demo with Gaussian noises to generate new trajec-
tories. These trajectories provide reasonable manipulation
strategies but are slightly different from the original one.
With the highly cost-effective sampling in the simulator, we
can enumerate the perturbation until it is successful. It is
important to note that this technique is feasible with real-
world demonstrations.



Algorithm 1 Auto Curriculum Learning

Input: human demo Dh, training set D, policy network
π, curriculum level L, evaluation function evalL(),
data aug. function augL(), success rate threshold rup,
number of failure Nfail, max number of failure Nmax

Output: Trained policy π
1: Initialize π and set L = 0, Nfail = 0, D = {}
2: while L ≤ 4 do
3: Generate augmented data augL(Dh)
4: Append into training set D ← D + augL(Dh)
5: Train π on D
6: Eval success rate rsucc = evalL(π)
7: if rsucc ≥ rup or Nfail ≥ Nmax then
8: L = L+ 1, Nfail = 0
9: else

10: Generate more data D ← D + augL(Dh)
11: Nfail = Nfail + 1
12: end if
13: end while

Randomize Object Pose. A common approach in rein-
forcement learning to enhance generalizability involves ran-
domizing the object pose during reset. Augmenting imita-
tion learning data to achieve a similar outcome, however, is
less intuitive. Denote TB

A ∈ SE(3) as the pose of frame
B relative to frame A. The original object pose is TOold

W ,
the newly randomized object pose is TOnew

W , and the orig-
inal end effector pose is TRold

W . The objective is to handle
the object pose change TOnew

W (TOold

W )−1. A simple strategy
can be first moving the robot end effector to a new initial
pose, TRnew

W = TOnew

W (TOold

W )−1TRold

W . Then, the rela-
tive pose between the robot and the object aligns with the
original demonstration, enabling us to replay the same ac-
tion sequence to accomplish the task. Although this method
succeeds in generating new trajectories, it offers minimal
assistance for downstream imitation learning. The new tra-
jectory is always composed of two segments: a computed
reaching trajectory to the new end effector pose TRnew

W ,
and the original trajectory. Given that different augmented
trajectories often share a significant portion of redundancy,
they fail to provide substantial new information to learning
algorithms.

To address this, we propose Sensitivity-Aware Kine-
matics Augmentation to randomize object poses for hu-
man demonstrations. Instead of appending a new trajectory
ahead of the original one, this method amends the action for
each step in the original demo to accommodate the change
in object pose TOnew

W (TOold

W )−1. The method includes two
steps: (i) Divide the entire trajectory into several segments
and compute the sensitivity of each segment; (ii) Modify
the end effector pose trajectory based on the sensitivity to
compute the new action.

(i) Sensitivity Analysis for Trajectory Segments. Sen-
sitivity pertains to the robustness against action noise. For
example, a pre-grasp state, when the hand is close to the
object, has higher sensitivity compared to a state where the
hand is far away. The critical insight is that it is simpler to
modify the action of those states with lower sensitivity to
handle the object pose variation ∆T = TOnew

W (TOold

W )−1.
The robustness (the multiplicative inverse of sensitivity) of
a trajectory segment ψ can be mathematically defined as
follows:

ψseg = exp(maxδa) s.t. eval(τ ′) = 1

τ ′ = {a1, a2, ..., a′n, ..., a′n+K−1, ..., aN}
∀i ∈ seg a′i = ai + δaϵi, ϵi ∼ N (0, 1)

(1)

In this equation, we divide the original action trajectory τ
with length N into M segments, each segment with size
K = N/M . Then we perturb the action within a segment
seg by adding Gaussian noise of scale δa to the original ac-
tion {am, an+1, ..., an+k−1} while keeping all the actions
outside of this segment unchanged to generate perturbed
trajectory τ ′. We assume the action space is already nor-
malized to [−1, 1] and eval is a binary function indicating
whether an action trajectory can successfully solve the task.
Intuitively, a demonstration segment is more sensitive if a
smaller perturbation can cause it to fail. This sensitivity
guides us on how to adjust the action to handle a new object
pose. In practice, we incrementally escalate the noise scale
δa applied to the original action trajectory until the task fails
to determine max δa

(ii) New End Effector Pose Trajectory. To accommo-
date the new object pose, the total pose change of the end
effector should be the same as the change in the object pose
∆T . Each action contributes a small part to this change. We
distribute this ”task” to each step based on sensitivity:

ψsegj =
ψsegj∑M
j=1 ψsegj

, ∀segj

∆Tj = exp(ψsegj log(∆T )/K)

anewi = aifi(∆Tj)

(2)

In this equation, ψsegj is the normalized robustness, ∆Tj
represents the pose modification for each step, with all
states in the same segment being responsible for the same
amount of modification ”task” to compute new action anewi .
fi is a similarity transformation in SE(3) space that con-
verts the motion from the world frame to the current end
effector frame. Intuitively, segments with higher robustness
are tasked with more significant changes.

Please note that all the actions discussed above pertain
solely to the 6D delta pose of the end effector and do not
include the finger motion of the dexterous hand. For tasks
such as pick-and-place or pouring, which also involve a tar-
get pose (e.g., the plate pose in pick-and-place or the bowl



pose in pouring), we can apply the same augmentation strat-
egy to the target pose (as illustrated in Level 3 of Fig. 2).

3 .3. Learning Sim2Real Policy

Given an augmented simulation dataset, we train a visual
manipulation policy that takes images and robot proprio-
ception as input to predict the robot’s actions. In human
teleoperation demonstrations, robot movements are neither
Moravian nor temporally correlated. To deal with this is-
sue, our policy is trained to predict action chunks rather
than per-step actions, using Action Chunking with Trans-
formers(ACT) [85]. This approach produces smoother tra-
jectories and reduces compounding errors.

Despite our data augmentation’s capacity to accommo-
date diverse visual and dynamic conditions, a sim2real gap
remains for the robot controller. This gap becomes more
challenging in our tasks, where the end effector is a high-
DoF multi-finger dexterous hand. This controller gap can
significantly impact non-quasi-static tasks like rotating a
valve, as shown in the second row of Figure 1. To close
this gap, we fine-tune our network using a small set of real-
world demonstrations (3-minute trajectory). However, due
to the discrepancies in data collection patterns of human de-
mos between simulation and reality, direct fine-tuning on
real data risks overfitting. To ensure a smoother sim2real
transfer, we employ several techniques, which will be dis-
cussed subsequently.
Automatic Curriculum Learning. Curriculum learning
and data augmentation techniques are often used together
to provide a smoother training process. Following the spirit
of curriculum design in previous reinforcement learning
work [1, 24], we devise a curriculum learning strategy ap-
plicable to our imitation learning context. Prior to training,
we group the augmentations in Section 3 .2 into four lev-
els of increasing complexity, as depicted in Figure 2. As
per Algorithm 1, we begin training from the simplest level,
L = 0, signifying no augmentation, and then evaluate the
task success rate after several steps of training. The eval-
uation difficulty aligns with the current level of L. When
the success rate surpasses a pre-defined threshold, we ad-
vance to the next level, which brings greater augmentation
and harder evaluation. If the success rate fails to reach the
threshold, we create additional augmented training data and
stays at the current level. We continue this iterative process
until all levels are completed. To prevent endless training,
we introduce a fail-safe Nmax: if the policy repeatedly fails
during evaluation for Nmax times, we also progress to the
next level. This curriculum learning approach significantly
depends on data augmentation techniques to generate train-
ing data dynamically with suitable levels of randomization.
This concept stands in contrast to typical supervised learn-
ing scenarios, where data is pre-established prior to train-
ing. This on-demand data generation and customization

highlights the advantage of simulation data over real-world
demonstrations.
Action Aggregation for Small Motion. Human demon-
strations often include noise, especially during operations
involving a dexterous hand. For example, minor shaking
and unintentional halting can occur within the demonstra-
tion trajectory, potentially undermining the training process.
To solve this, we aggregate steps characterized by small mo-
tions, merging these actions into a single action. In prac-
tice, we set thresholds for both end-effector and finger mo-
tions to discern whether a given motion qualifies as small.
Through the aggregation process, we can eliminate small
operational noises from human actions, enabling the imita-
tion learning policy to extract meaningful information from
the state-action trajectory.

4 . Experiment Setups
Our experimental design aims to address the following key
queries:

(i) How does simulation-based data augmentation com-
pare to learning from real demonstrations in terms of both
robustness and generalizability?

(ii) How does our automatic curriculum learning con-
tribute to improved policy learning?

(iii) What is the ideal ratio between simulated and real
data to train an effective policy for a real-world robot?

4 .1. Dexterous Manipulation Tasks

We have designed three types of manipulation tasks in
both real-world and simulated environments, including two
quasi-static tasks (pick and place, pour) and one non-quasi-
static task (rotate). For the experiments, we utilize an Al-
legro hand attached to an XArm6. The action space com-
prises a 6-dim delta end effector pose of the robot arm and a
16-dim finger joint position of the dexterous hand, with PD
control employed for both arm and hand.

Pick and Place. This task requires the robot to lift an
object from the table and position it on a plate (first row of
Figure 1). Success is achieved when the object is properly
placed onto the red plate. We select two objects during data
collection and testing on multiple different objects.

Rotate. This task requires the robot to rotate a valve on
the table (second row of Figure 1). The valve is constructed
with a fixed base and a moving valve geometry, connected
via a revolute joint. The task is successful when the robot
rotates the valve to 720 degrees. We use a tri-valve in data
collection and test on tetra-valves and penta-valves.

Pour. This task requires the robot to pour small boxes
from a bottle into a bowl (third row of Figure 1). It involves
three steps: (i) Lift the bottle; (ii) Move it close to the bowl;
(iii) Rotate the bottle to dispense the small boxes into the
bowl. Success is achieved when all four boxes have been
poured into the bowl.



Pick and Place
Mustard Bottle
(Single Object)

Pick and Place
Tomato Soup Can

(Single Object)
Pouring Rotating

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4
R3M 2 / 20 0 / 20 0 / 20 0 / 20 7 / 20 3 / 20 4 / 20 0 / 20 3 / 20 0 / 20 0 / 20 0 / 20 11 / 20 2 / 20 6 / 20 2 / 20
PVR 4 / 20 0 / 20 0 / 20 0 / 20 4 / 20 0 / 20 3 / 20 0 / 20 2 / 20 0 / 20 1 / 20 0 / 20 8 / 20 3 / 20 5 / 20 1 / 20
MVP 2 / 20 0 / 20 3 / 20 1 / 20 7 / 20 2 / 20 4 / 20 2 / 20 1 / 20 1 / 20 3 / 20 2 / 20 8 / 20 4 / 20 10 / 20 6 / 20
Ours 7 / 20 6 / 20 8 / 20 5 / 20 14 / 20 11 / 20 13 / 20 13 / 20 9 / 20 4 / 20 10 / 20 7 / 20 15 / 20 10 / 20 17 / 20 13 / 20

Table 1. Main Comparison on Real Robot. In our study, we compare the performance across four distinct tasks: (a) Pick and Place
Bottle, (b) Pick and Place Can (exploring different grasping approaches), (c) Pouring (grasping a bottle and pouring its contents into a
bowl), and (d) Rotating the tri-valve. We perform evaluations of the models in four levels of real-world scenarios. These levels included:
(a) Level 1: In Domain, (b) Level 2: Out of Position, (c) Level 3: Random Light, and (d) Level 4: Out of Position and Random Light.

For each task, we have designed levels for both data aug-
mentation ( Section 3 .2) and curriculum learning (Section 3
.3). More details regarding the design of task levels can be
found in the supplementary material.

4 .2. Baselines

Our approach can be interpreted as an initial pretraining
phase using augmented simulation demonstrations followed
by fine-tuning with a limited set of real data. It is natural
to compare our method with other pre-training models for
robotic manipulation. We have chosen three representative
vision pre-training models. For all of them, we utilize the
pre-trained model provided by the author and then fine-tune
it using our real-world demonstration dataset.
PVR is built on MoCo-v2 [13], using a ResNet50 back-
bone [25] trained on ImageNet [57].
MVP employs self-supervised learning from a Masked Au-
toencoder [27] to train visual representation on individual
frames from an extensive human interaction dataset com-
piled from multiple existing datasets. MVP integrates a Vi-
sion Transformer [19] backbone that segments frames into
16x16 patches.
R3M proposes a pre-training approach where a ResNet50
backbone is trained using a mix of time-contrastive learn-
ing, video-language alignment, and L1 regularization. This
model is trained on a large-scale human interaction videos
dataset from Ego4D [22].

5 . Results

5 .1. Main Comparison

Augmented simulation data markedly boosts real-world
dexterous manipulation. As depicted in Table 1, our
methodology outperforms the baselines trained exclusively
on real data in the in-domain setting (Level 1), exhibiting
an average performance boost of 31.67% averaged on all
tasks. Additionally, in other settings like random lighting
(Level 2), out of position (Level 3), combined random light-
ing and out of position (Level 3) R3M, and MVP, the base-
lines exhibit a significant drop in success rates. In contrast,
our method shows resilience to these variations, underscor-
ing the efficacy of simulation data augmentation. Not only
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Figure 4. Generalization to Novel Objects for Pick and Place.
We compare our approach with the baselines in scenarios involv-
ing novel objects, random light disturbances, and random object
positions.

does this approach bridge the sim2real gap and amplify
performance in in-domain real-world tasks, but it also sig-
nificantly improves manipulations in out-of-domain real-
world scenarios. By integrating augmentation for both vi-
sual and dynamic variations, our method successfully navi-
gates challenges and delivers impressive results.

5 .2. Generalization to Novel Objects

By incorporating data augmentation techniques, such as in-
cluding diverse objects in simulation, our model can effec-
tively manipulate unfamiliar objects, even when transition-
ing to a real-world context. As shown in Figure 4 and 5,
the baseline methods grapple with more complex real-world
situations. In the most challenging scenario, rotating novel
objects under random light conditions and new object po-
sitions, only one baseline method manages to solve it by
chance with a 2.5% success rate. In contrast, our method
still accomplishes the task with a success rate of 30%.

5 .3. Ablation on Data Augmentation

To evaluate the effectiveness of the data augmentation tech-
niques, we perform an ablation study where our policy is
trained with four levels of augmentation. As depicted in Ta-



Test in Sim Test in Real

Set of Levels / Num of demos Level 1 Level 2 Level 3 Level 4 In Domain Random Light Out of Position
Out of Position

+ Random Light
[1] / 100 78% 0% 0% 0% 20% 5% 0% 0%

[1, 2] / 330 73% 75% 10.5% 7.5% 15% 25% 0% 0%
[1,2,3] / 550 58% 66.5% 43.5% 21% 15% 15% 5% 15%

[1,2,3,4] / 810 92.5% 81% 63% 49% 35% 30% 30% 40%

Table 2. Ablation on Data Augmentation. To demonstrate the benefits of data augmentation, we employed auto-curriculum learning on
various sets of levels. We performed 200 simulations to test its impact in a simulated environment and conducted 20 real-world tests to
evaluate its effectiveness in a practical setting.
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Figure 5. Generalization to Novel Objects for Rotating. The
experimental setup for this task mirrors that of the ”Generalization
to Novel Objects for Pick and Place” experiments.

ble 2, the policy performs better in both the simulation and
real-world settings with increased data augmentation, and
the policy trained on all four levels excels in all metrics.
Interestingly, the policy manages to solve simpler settings
more effectively even in simulation when more randomness
is introduced in the training data. These experiments under-
score the importance of simulator-based data augmentation.

5 .4. Ablation on Auto-Curriculum Learning

In this experiment, we evaluate the policy’s effectiveness by
testing it 200 times in simulations and conducting 20 real-
world tests. As shown in Table 3, employing curriculum
learning with auto-domain randomization solely based on
the data generation rate yields inferior results compared to
the approach based on model performance.

5 .5. Ablation on Ratio of Sim and Real Demos

To determine the optimal ratio between sim and real demos,
we conducted tests using different combinations of sim and
real demonstrations, as shown in Table 4. We observe that
training solely on 50 real demonstrations results in poor per-
formance, and the policy overfits to joint positions rather
than utilizing the visual information in images. The best
results were obtained with a combination of 15 simulation

Test in Sim Test in Real

Method Level 1 Level 2 Level 3 Level 4
Out of Position

+ Random Light
ACL (Task) 80% 61% 43.5% 57% 35%
ACL (Data) 19.5% 30% 75% 66% 20%

ACL wo CL(Data) 20% 22% 32.5% 15% 5%

Table 3. Ablation on Auto-Curriculum Learning. We compare
three different settings: (1) Auto Curriculum Learning based on
the success rate. (2) Auto Curriculum Learning based on Data
Generation Rate(the ratio of successfully generated trajectories to
the total number of attempts). (3) Automatic Domain Randomiza-
tion only based on Data Generation Rate.

Test in Sim Test in Real

Dataset Level 1 Level 2 Level 3 Level 4 In Domain Out of Position
50 sim 73.5% 80% 63.5% 36% 0% 0%

35 sim + 15 real 77% 70.5% 61% 45.5% 25% 35%
15 sim + 35 real 63% 74% 55% 33.5% 50% 15%

50 real 0% 0% 0% 0% 10% 0%

Table 4. Ablation on Ratio of Sim and Real Demos. We compare
the performance resulting from various quantities of simulated and
real demonstrations, keeping the total number of demonstrations
constant.

demonstrations and 35 real demonstrations. These results
highlight that collecting simulation data can be exception-
ally valuable, even more so considering the significantly
lower data collection costs.

6 . Discussion
We propose CyberDemo, a novel pipeline for imitation
learning in robotic manipulation, leveraging demonstrations
collected in simulation. While the common belief suggests
that real-world demonstrations are the optimal way to solve
real-world problems, we challenge this notion by demon-
strating that extensive data augmentation can make simu-
lation data even more valuable than real-world demonstra-
tions, a fact also supported by our experiments. One lim-
itation is the necessity to design a simulated environment
for each real-world task, thereby increasing the human ef-
fort involved. However, since our method doesn’t demand
the design of specific rewards as in reinforcement learning
tasks, which is often the most challenging aspect, the over-
all effort required is not as significant.
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CyberDemo: Augmenting Simulated Human Demonstration
for Real-World Dexterous Manipulation

Supplementary Material

A . Overview

This supplementary document offers further information,
results, and visualizations to complement the primary pa-
per. Specifically, we encompass:

• Details on data collection;
• Details on training and testing procedures;
• Details on the design of evaluation levels;
• Comparision to other data generation methods;
• More ablation studies;
• Additional details on the derivation of data augmentation

for randomizing object poses.

B . Implementation details

In this section, we provide an overview of the data collec-
tion, training, and testing processes.

B .1. Human Demonstration Collection

The human play data is gathered through a teleoperation
setup, where a human operator controls the system using a
single real-sense camera in both the simulated and real en-
vironments. The entire trajectory is recorded at a rate of 30
frames per second, with each trajectory spanning approxi-
mately 20-30 seconds.

In the real-world setting, an additional real-sense cam-
era is used to capture RGB images, which serve as the ob-
servations in the dataset. To ensure alignment between the
simulated and real environments, we perform hand-eye cali-
bration in the real world. This calibration process allows us
to determine the relative position between the camera and
the robot arm, enabling us to apply this transformation in
the simulation.

B .2. Real World Setup

The system design for data collection is shown in Figure
6. As represented in the figure, the collection of human
play data incorporates a human operator and a camera. The
camera captures video footage at a frequency of 30 frames
per second. Throughout the data collection process, the hu-
man operator interacts with the scene without any defined
task objective. Instead, they interact freely with the envi-
ronment, motivated by curiosity and the intent to observe
intriguing behaviors.

In our experiments, human play data is collected by
recording 30 seconds of uninterrupted interaction in each
demonstration. This timeframe permits ample data to be

Disco  
Light

Real Sense
CameraRobots

Figure 6. Details of System Setups in Real World

gathered, yielding a rich and varied collection of behaviors
for examination and study.

B .3. Policy Training

We use a conditional VAE [68] for training on 100 simula-
tion demonstrations. The action chunking size was fixed at
50, in line with the methodology adopted in [85]. Following
the simulation data training, the model was fine-tuned with
15 real-world demonstrations, using a smaller learning rate
and distinct batch norms for the real-world data.

Hyperparameters related to policy learning are displayed
in Table 5, whereas Table 6 lists the hyperparameters perti-
nent to auto-curriculum learning.

To infuse diversity into the augmentation process, we
have incorporated a randomness scale that ranges from 0 to
10 for each augmentation. In the context of auto-curriculum
learning, this randomness scale progressively rises with a
constant variance throughout each testing cycle.

In the course of auto-curriculum learning, the policy’s
performance is assessed across all four simulation levels,
and the success rate is averaged. If the success rate falls
below the success rate threshold, the increase in randomness
scale is halted. This strategy aids in maintaining a balance
between introducing randomness and ensuring the policy
consistently accomplishes its tasks.

In summary, these hyperparameters and the evaluation
procedure in auto-curriculum learning allow the policy to
evolve and enhance over time, gradually escalating the ran-
domness scale while preserving a satisfactory success rate.



Hyperparameter Default
Batch Size 128
Num of Epochs None
Finetuning Epochs 3000
Optimizer AdamW
Learning Rate (LR) 1e-5
Finetuning LR 1e-6
Weight Decay 1e-2
Evaluation Frequency 100 epochs
Encoder Layers 4
Decoder Layers 7
Heads 8
Feedforward Dimension 3200
Hidden Dimension 256
Chunk Size 50
Dropout 0.1

Table 5. Hyperparameters of Policy Network

Hyper Parameters Default
Test Cycles 300
Evaluation Freq 100 epochs
Randomness Variance For Each Cycle 0.2
Success Rate Threshold 15%
Data Generation Rate Threshold 30%

Table 6. Hyperparameters for Auto Curriculum Learning

B .4. Policy Testing

During the real-world testing phase, we perform both in-
domain and out-of-domain tests to evaluate the performance
of the model. For out-of-domain tests, we significantly ran-
domize the positions of objects, consciously choosing loca-
tions not included in the original data. This step guarantees
that the model is examined in unfamiliar situations, evalu-
ating its capacity to generalize and adjust to novel object
arrangements.

Moreover, to introduce visual disruptions and test the ro-
bustness of the model, we incorporate a disco light. The
disco light generates visual disturbances and adds an extra
layer of complexity to the test environment. This approach
enables us to assess the model’s resilience in dealing with
unexpected visual inputs and its ability to sustain perfor-
mance amidst such disruptions.

In the concluding stage, we evaluate the policy’s ability
to generalize across a range of objects, as illustrated in Fig-
ure 7. To carry out this generalizability test, we enhance
the initial 100 simulation demonstrations by introducing
10 unique objects (adding 10 additional demonstrations for
each object), and then re-run our pipeline. For the pick and
place task in the real-world setting, we collected 15 demon-
strations involving three different objects (with five demon-

strations performed for each object within the red frame).
For the rotating task, the real-world dataset includes only
one object, identical to the original testing case.

By conducting these assessments and incorporating a va-
riety of objects, we aim to evaluate the policy’s adaptability
and performance in diverse situations, ensuring its robust-
ness and flexibility. A selection of demos is displayed in
Figure 8.

B .5. Details of Simulation Evaluation Level designs

In the Pick & Place and Pour tasks, we have defined differ-
ent levels to introduce varying degrees of randomness:
• Level 1 signifies the original domain and encompasses

slight randomization of the pose of the manipulated ob-
jects, including the end-effector pose and orientation.

• Level 2 includes randomization of lighting and texture.
• Level 3 incorporates minimal randomization of the target

objects (plate in pick place, bowl in pouring).
• Level 4 escalates the randomness scale of both the manip-

ulated and target objects.
For Rotate task since there is only one object, things are
different for the Rotate task:
• Level 1 is set as randomizing the orientation of the ob-

jects, which is also the original domain.
• Level 2 is the same as pick place and pouring tasks.
• Level 3 is adding the randomization of the end-effector

pose of the manipulated objects.
• Level 4 increases the randomness scale of the manipu-

lated objects.
Below are the defined randomness parameters for each task,
with all numbers listed in international units if without a
statement. In our settings, the position (0,0) represents the
center of the table.
Level Design for Pick and Place
• Random Manipulated Object Pose with a small scale:

– The x-coordinate of the Manipulated Object ranges
from -0.1 to 0.1.

– The y-coordinate of the Manipulated Object ranges
from 0.2 to 0.3.

– The Manipulated Object’s z-axis Euler degree ranges
from 80 to 90.

• Random Light and Texture(The randomness scale here is
fixed to be 2):
– The direction of the light is constrained within a circu-

lar range. The radius of this circle spans from 0.5 to
the randomness scale * 0.1.

– To determine the color of each channel for the lights, a
uniform sampling approach is employed. This involves
selecting a value within the range [default color of that
channel - randomness scale * 0.1, default color of that
channel + randomness scale * 0.1].

– The ground color and sky color of the environment map
are randomized in the same way as lights.



• Random Target Object Pose with a small scale:
– The x-coordinate of the Target Object ranges from -0.1

to 0.1.
– The y-coordinate of the Target Object ranges from -0.3

to -0.1.
• Random Manipulated and Target Object Pose with a

Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.2 to 0.2.
– The y-coordinate of the Manipulated Object ranges

from 0.1 to 0.3.
– The Manipulated Object’s z-axis Euler degree ranges

from 70 to 90.
– The Manipulated Object’s z-axis Euler degree ranges

from 80 to 90.
– The x-coordinate of the Target Object ranges from -0.2

to 0.2.
– The y-coordinate of the Target Object ranges from -0.3

to 0.
Level Design for Pour
• Random Manipulated Object Pose with a small scale:

– The x-coordinate of the Manipulated Object ranges
from -0.1 to 0.1.

– The y-coordinate of the Manipulated Object ranges
from -0.2 to -0.1.

– The Manipulated Object’s z-axis Euler degree ranges
from 0 to 179.

• Random Light and Texture(The randomness scale here is
fixed to be 2): same as pick and place.

• Random Target Object Pose with a small scale:
– The x-coordinate of the Target Object ranges from -0.1

to 0.1.
– The y-coordinate of the Target Object ranges from 0.2

to 0.3.
• Random Manipulated and Target Object Pose with a

Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.1 to 0.15.
– The y-coordinate of the Manipulated Object ranges

from -0.3 to 0.
– The x-coordinate of the Target Object ranges from -0.2

to 0.2.
– The y-coordinate of the Target Object ranges from 0.2

to 0.4.
– The Manipulated Object’s z-axis Euler degree ranges

from 0 to 359.
Level Design Rotate
• Random Manipulated Object Pose with a small scale:

– The Manipulated Object’s z-axis Euler degree ranges
from 0 to 30.

• Random Light and Texture(The randomness scale here is
fixed to be 2): same as pick and place.

• Random Manipulated Object Pose with a small scale:

Object Set B 
(for Pick and Place)

Object Set A 
(for Rotate)

Figure 7. Object Sets in Real World. The objects located within
the red frame are allocated for training, while the remaining ob-
jects are set aside for testing on previously unseen objects.

– The x-coordinate of the Target Object ranges from -0.1
to 0.1.

– The y-coordinate of the Target Object ranges from -
0.15 to 0.15.

• Random Manipulated Pose with a Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.2 to 0.2.
– The y-coordinate of the Manipulated Object ranges

from -0.3 to 0.3.
– The Manipulated Object’s z-axis Euler degree ranges

from 0 to 60.

C . More Experimental Results
C .1. Comparision of Data Generation Method

To test our data augmentation approach’s effectiveness,
we pretrained using simulation data augmented by Mimic-
Gen [44] and then fine-tuned with real-world teleoperation
data, a sim2real transfer not included in the original Mimic-
Gen framework. As shown in Figure 7, MimicGen adds an
interpolated trajectory (in purple) to new object poses, po-
tentially causing abrupt transitions. Our method, however,
seamlessly integrates the entire sequence, resulting in more
fluid motion. The imitation learning policy trained with our
data thus outperforms others, as evidenced by the improved
results in simulation and reality shown in the table.

C .2. Ablation on Action Aggregation

As illustrated in Figure 9, the use of action aggregation with
Small Motion extends beyond its advantages in imitation
learning within a single domain. It also functions as an ef-
fective instrument in closing the gap between simulated and
real environments. As illustrated in Figure 10, the success



Figure 8. Pick and Place Evaluation on diverse real-world ob-
jects.

Simulation Real World

Level 1 Level 2 Level 3 Level 4
In

Domain
Out of

Position
Random

Light
MimicGen 75.5% 49% 19.5% 14% 2/20 1/20 5/20
Ours 80% 61% 43.5% 57% 7/20 6/20 8/20

Table 7. Comparision to MimicGen. We compare our data aug-
mentation method with the one used in MimicGen on the Pick and
Place task. For real-world experiments, we fine-tuned it with the
same real-world data as other methods.
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Figure 9. Success Rate on Action Aggregation
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Figure 10. Ablation on Action Aggregation with Small Motion
in Simulation. Success rate evaluate in simulator when the policy
is trained on dataset with and without action aggregation.
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Figure 11. Ablation on Multi-View Augmentaion

rate of the policy becomes more pronounced as the level
of difficulty escalates. This suggests that action aggregation
becomes increasingly beneficial for more challenging tasks.

C .3. Ablation on Novel Camera Views

As demonstrated in Figure 11, the application of ran-
dom camera views augmentation improves the policy’s ro-
bustness, particularly in situations involving camera view
changes. In this method, all levels remain consistent while
minor alterations to the camera view are incorporated.

These changes involve a combined rotation along the y-
axis and z-axis, plus a slight shift in the x, y, and z direc-
tions. The rotation Euler angle is sampled within the range
of [−15, 15], enabling managed variation in the camera’s
alignment. Additionally, the translation is sampled within
the range of [−0.05m, 0.05m], allowing minor adjustments
in the camera’s placement.

By integrating these alterations, the multi-view aug-
mentation method introduces realistic variations in camera
perspectives, thereby enhancing the policy’s resilience to
changes in the viewpoint. This strategy boosts the model’s
capability to adapt and perform efficiently, even when con-
fronted with varied camera angles and positions.

C .4. Ablation on Kinematics Augmentation

We ablate the augmentation methods with or without sen-
sitivity analysis (in contrast, simply relocating the end-
effector to a new pose). We test both methods in an environ-
ment where object poses are extensively randomized, to ver-
ify the effectiveness of these two kinematic augmentation



approaches. Figure 12 illustrates the success rate during
training using datasets generated via these distinct augmen-
tation strategies. Our findings demonstrate that, through the
application of our proposed techniques, the model demon-
strates consistent improvement over all three manipulation
tasks. These outcomes underscore the efficacy of incorpo-
rating sensitivity analysis into pose data augmentation.

Figure 12. Augmentation Comparison We apply kinematic aug-
mentation to one selected original demo, adapting it to a new po-
sition utilizing both the MimicGen method and ours.

D . Derivation of Data Augmentation
In this section, we delve deeper into the derivation of the
formula applied in the data augmentation of random object
pose. We reproduce Equation 2 from the main paper and
provide a detailed explanation:

ψsegj =
ψsegj∑M
j=1 ψsegj

, ∀segj

∆Tj = exp(ψsegj log(∆T )/K)

anewi = aifi(∆Tj)

(3)

The first line of the equation normalizes the robustness
score computed from Equation 1 in the main paper, ensuring
that the sum of all scores equals 1. This parameter can be
interpreted as a weight for each action chunk, symbolizing
the proportion of modification each chunk should undertake
to guide the robot to the new pose.

The second line calculates the relative pose modification
for each step in chunk j. There are K steps in chunk j,
and each step is allocated the same quantity of modification
within the same chunk. Here, log() maps the SE(3) Lie
Group to its se(3) Lie algebra, where exp is its inverse,
mapping se(3) back to SE(3).

The third line of this equation computes the new ac-
tion based on the pose modification. Here, fi is a sim-
ilarity transformation in the SE(3) space that transitions
the motion from the world frame to the current end-effector
frame. We now provide a detailed derivation of fi. Since
∆T = TOnew

W (TOold

W )−1 = TOnew

Oold
, this relative pose

change is a representation in the old object pose frame.
To use this pose transformation to modify the action, we
need to transform this relative pose into the frame corre-
sponding to the action, which is the frame of the current
end-effector pose. Considering the similarity transforma-
tion TA

BX(TA
B )−1, which transforms a SE(3) motion X

represented in frame B to frame A, fi can be derived as

fi(∆T ) = TOold

Ri
∆T (TOold

Ri
)−1, where TRi is the robot

end-effector pose in frame i.
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